Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631602

RESUMO

Automatic hand gesture recognition in video sequences has widespread applications, ranging from home automation to sign language interpretation and clinical operations. The primary challenge lies in achieving real-time recognition while managing temporal dependencies that can impact performance. Existing methods employ 3D convolutional or Transformer-based architectures with hand skeleton estimation, but both have limitations. To address these challenges, a hybrid approach that combines 3D Convolutional Neural Networks (3D-CNNs) and Transformers is proposed. The method involves using a 3D-CNN to compute high-level semantic skeleton embeddings, capturing local spatial and temporal characteristics of hand gestures. A Transformer network with a self-attention mechanism is then employed to efficiently capture long-range temporal dependencies in the skeleton sequence. Evaluation of the Briareo and Multimodal Hand Gesture datasets resulted in accuracy scores of 95.49% and 97.25%, respectively. Notably, this approach achieves real-time performance using a standard CPU, distinguishing it from methods that require specialized GPUs. The hybrid approach's real-time efficiency and high accuracy demonstrate its superiority over existing state-of-the-art methods. In summary, the hybrid 3D-CNN and Transformer approach effectively addresses real-time recognition challenges and efficient handling of temporal dependencies, outperforming existing methods in both accuracy and speed.


Assuntos
Fontes de Energia Elétrica , Gestos , Automação , Redes Neurais de Computação , Esqueleto
2.
Sci Rep ; 13(1): 1464, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702910

RESUMO

This paper proposes a strategy to segment the playing field in soccer images, suitable for integration in many soccer image analysis applications. The combination of a green chromaticity-based analysis and an analysis of the chromatic distortion using full-color information, both at the pixel-level, allows segmenting the green areas of the images. Then, a fully automatic post-processing block at the region-level discards the green areas that do not belong to the playing field. The strategy has been evaluated with hundreds of annotated images from matches in several stadiums with different grass shades and light conditions. The results obtained have been of great quality in all the images, even in those with the most complex lighting conditions (e.g., high contrast between sunlit and shadowed areas). In addition, these results have improved those obtained with leading state-of-the-art playing field segmentation strategies.

3.
IEEE Trans Image Process ; 26(3): 1127-1142, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28026761

RESUMO

There is a huge proliferation of surveillance systems that require strategies for detecting different kinds of stationary foreground objects (e.g., unattended packages or illegally parked vehicles). As these strategies must be able to detect foreground objects remaining static in crowd scenarios, regardless of how long they have not been moving, several algorithms for detecting different kinds of such foreground objects have been developed over the last decades. This paper presents an efficient and high-quality strategy to detect stationary foreground objects, which is able to detect not only completely static objects but also partially static ones. Three parallel nonparametric detectors with different absorption rates are used to detect currently moving foreground objects, short-term stationary foreground objects, and long-term stationary foreground objects. The results of the detectors are fed into a novel finite state machine that classifies the pixels among background, moving foreground objects, stationary foreground objects, occluded stationary foreground objects, and uncovered background. Results show that the proposed detection strategy is not only able to achieve high quality in several challenging situations but it also improves upon previous strategies.

4.
IEEE Trans Cybern ; 46(11): 2584-2595, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26462251

RESUMO

Many computer vision and human-computer interaction applications developed in recent years need evaluating complex and continuous mathematical functions as an essential step toward proper operation. However, rigorous evaluation of these kind of functions often implies a very high computational cost, unacceptable in real-time applications. To alleviate this problem, functions are commonly approximated by simpler piecewise-polynomial representations. Following this idea, we propose a novel, efficient, and practical technique to evaluate complex and continuous functions using a nearly optimal design of two types of piecewise linear approximations in the case of a large budget of evaluation subintervals. To this end, we develop a thorough error analysis that yields asymptotically tight bounds to accurately quantify the approximation performance of both representations. It provides an improvement upon previous error estimates and allows the user to control the tradeoff between the approximation error and the number of evaluation subintervals. To guarantee real-time operation, the method is suitable for, but not limited to, an efficient implementation in modern graphics processing units, where it outperforms previous alternative approaches by exploiting the fixed-function interpolation routines present in their texture units. The proposed technique is a perfect match for any application requiring the evaluation of continuous functions; we have measured in detail its quality and efficiency on several functions, and, in particular, the Gaussian function because it is extensively used in many areas of computer vision and cybernetics, and it is expensive to evaluate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...